By Topic

Model-Based Prognostics With Concurrent Damage Progression Processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Daigle, M.J. ; NASA Ames Res. Center, Moffett Field, CA, USA ; Goebel, K.

Model-based prognostics approaches rely on physics-based models that describe the behavior of systems and their components. These models must account for the several different damage processes occurring simultaneously within a component. Each of these damage and wear processes contributes to the overall component degradation. We develop a model-based prognostics methodology that consists of a joint state-parameter estimation problem, in which the state of a system along with parameters describing the damage progression are estimated, followed by a prediction problem, in which the joint state-parameter estimate is propagated forward in time to predict end of life and remaining useful life. The state-parameter estimate is computed using a particle filter and is represented as a probability distribution, allowing the prediction of end of life and remaining useful life within a probabilistic framework that supports uncertainty management. We also develop a novel variance control algorithm that maintains an uncertainty bound around the unknown parameters to limit the amount of estimation uncertainty and, consequently, reduce prediction uncertainty. We construct a detailed physics-based model of a centrifugal pump that includes damage progression models, to which we apply our model-based prognostics algorithm. We illustrate the operation of the prognostic solution with a number of simulation-based experiments and demonstrate the performance of the approach when multiple damage mechanisms are active.

Published in:

Systems, Man, and Cybernetics: Systems, IEEE Transactions on  (Volume:43 ,  Issue: 3 )