By Topic

Predicting Quality of Service for Selection by Neighborhood-Based Collaborative Filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jian Wu ; Coll. of Comput. Sci., Zhejiang Univ., Hangzhou, China ; Liang Chen ; Yipeng Feng ; Zibin Zheng
more authors

Quality-of-service-based (QoS) service selection is an important issue of service-oriented computing. A common premise of previous research is that the QoS values of services to target users are supposed to be all known. However, many of QoS values are unknown in reality. This paper presents a neighborhood-based collaborative filtering approach to predict such unknown values for QoS-based selection. Compared with existing methods, the proposed method has three new features: 1) the adjusted-cosine-based similarity calculation to remove the impact of different QoS scale; 2) a data smoothing process to improve prediction accuracy; and 3) a similarity fusion approach to handle the data sparsity problem. In addition, a two-phase neighbor selection strategy is proposed to improve its scalability. An extensive performance study based on a public data set demonstrates its effectiveness.

Published in:

Systems, Man, and Cybernetics: Systems, IEEE Transactions on  (Volume:43 ,  Issue: 2 )