By Topic

Bayesian Multicategorical Soft Data Fusion for Human–Robot Collaboration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ahmed, N.R. ; Autonomous Syst. Lab., Cornell Univ., Ithaca, NY, USA ; Sample, E.M. ; Campbell, M.

This paper considers Bayesian data fusion of conventional robot sensor information with ambiguous human-generated categorical information about continuous world states of interest. First, it is shown that such soft information can be generally modeled via hybrid continuous-to-discrete likelihoods that are based on the softmax function. A new hybrid fusion procedure, called variational Bayesian importance sampling (VBIS), is then introduced to combine the strengths of variational Bayes approximations and fast Monte Carlo methods to produce reliable posterior estimates for Gaussian priors and softmax likelihoods. VBIS is then extended to more general fusion problems that involve complex Gaussian mixture (GM) priors and multimodal softmax likelihoods, leading to accurate GM approximations of highly non-Gaussian fusion posteriors for a wide range of robot sensor data and soft human data. Experiments for hardware-based multitarget search missions with a cooperative human-autonomous robot team show that humans can serve as highly informative sensors through proper data modeling and fusion, and that VBIS provides reliable and scalable Bayesian fusion estimates via GMs.

Published in:

Robotics, IEEE Transactions on  (Volume:29 ,  Issue: 1 )