By Topic

Center of Mass Acceleration Feedback Control of Standing Balance by Functional Neuromuscular Stimulation Against External Postural Perturbations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Raviraj Nataraj ; Department of Biomedical Engineering , Case Western Reserve University, Cleveland, USA ; Musa L. Audu ; Ronald J. Triolo

This study investigated the use of center of mass (COM) acceleration feedback for improving performance of a functional neuromuscular stimulation control system to restore standing function to a subject with complete, thoracic-level spinal cord injury. The approach for linearly relating changes in muscle stimulation to changes in COM acceleration was verified experimentally and subsequently produced data to create an input-output map driven by sensor feedback. The feedback gains were systematically tuned to reduce upper extremity (UE) loads applied to an instrumented support device while resisting external postural disturbances. Total body COM acceleration was accurately estimated (>;89% variance explained) using 3-D outputs of two accelerometers mounted on the pelvis and torso. Compared to constant muscle stimulation employed clinically, feedback control of stimulation reduced UE loading by 33%. COM acceleration feedback is advantageous in constructing a standing neuroprosthesis since it provides the basis for a comprehensive control synergy about a global, dynamic variable and requires minimal instrumentation. Future work should include tuning and testing the feedback control system during functional reaching activity that is more indicative of activities of daily living.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:60 ,  Issue: 1 )