Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Classification of location of damage in package-on-package (PoP) assemblies using ANN with feature vectors for progression of accrued damage

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lall, P. ; Dept. of Mech. Eng., Auburn Univ., Auburn, AL, USA ; Gupta, P. ; Goebel, K.

Miniaturization of electronic products has resulted in proliferation of package-on-package (PoP) architectures in por table electronics. In this study, daisy-chained double-stack PoP components have been used for early-identification of drop-shock impact damage. Time-spectral feature vector based damage pre-cursors have been identified and measured under app lied shock stimulus. Experimental strain data has been acquired using strain sensors, digital image correlation. Continuity has been measured suing high-speed instrumentation for identification of failure in the PoP assemblies. The timeevolution of spectral content of the damage pre-cursors has been studied using joint time frequency analysis (JTFA). The Karhunen-Loéve transform (KLT) has been used for feature reduction and de-correlation of the feature vectors for input to an artificial neural network. The artificial neural net has been trained for failure-mode identification using simulated data-sets created from error-seeded models with specific failure modes. The neural net has then been used to identify and classify the failure modes experimentally observed in tested board assemblies. Supervised learning of multilayer neural net in conjunction with parity has been used to identify the hard-separation boundaries between failure mode clusters in the de-correlated feature space. Pre-failure feature space has been classified for different fault modes in PoP assemblies subjected to drop and shock.

Published in:

Prognostics and Health Management (PHM), 2012 IEEE Conference on

Date of Conference:

18-21 June 2012