By Topic

Adaptive Parameter Adjustment of a Real-Time SPH Simulation for Interactive Virtual Environments: Application to Parallel Processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kawai, M. ; Dept. of Mech. Eng., Univ. of Fukui, Fukui, Japan ; Suzuki, Y.

In this research, we develop a real-time fluid simulator, which uses smoothed particle hydrodynamics (SPH), for virtual environments including 3-dimensional fluid. SPH is a type of particle method and easy to control computational time by reducing or increasing the number of particles, however, it is difficult to change the number of particles while maintaining the same volume of fluid and the stability during a simulation. In this paper, we propose a new method to automatically adjust the number of particles, mass, radius in kernel functions and gains of density feedback for a real-time process while maintaining the stability. This paper also proposes to apply the method to a system using parallel processing with multi-thread programming. Finally, simulations are performed to estimate the effectiveness of the proposed method for parallel processing.

Published in:

Software Engineering, Artificial Intelligence, Networking and Parallel & Distributed Computing (SNPD), 2012 13th ACIS International Conference on

Date of Conference:

8-10 Aug. 2012