Cart (Loading....) | Create Account
Close category search window
 

Energy Storage System for Mitigating Voltage Unbalance on Low-Voltage Networks With Photovoltaic Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chua, K.H. ; Electr. & Electron. Eng. Dept., Univ. Tunku Abdul Rahman, Tronoh, Malaysia ; Yun Seng Lim ; Taylor, Phil ; Morris, S.
more authors

The growth of building integrated photovoltaic (BIPV) systems in low-voltage (LV) networks has the potential to raise several technical issues, including voltage unbalance and distribution system efficiency. This paper proposes an energy storage system (ESS) for mitigating voltage unbalance as well as improving the efficiency of the network. In the study, a power system simulation tool, namely PSCAD, is used to model two generic LV networks, BIPV systems and an ESS in order to simulate the performance of the networks with various levels of BIPV penetrations. A control algorithm is developed and implemented in the energy storage model in order to study the ability of the ESS to mitigate network voltage unbalance and reduce losses. Experimental studies are carried out in the experimental small-scale energy zone to investigate the effectiveness of the energy storage system under various levels of PV penetration and load conditions. The simulation and experimental studies carried out clearly show the effectiveness of the ESS in reducing the voltage unbalance factor and improving the efficiency of the two networks considered.

Published in:

Power Delivery, IEEE Transactions on  (Volume:27 ,  Issue: 4 )

Date of Publication:

Oct. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.