By Topic

Performance Analysis of Cognitive Spectrum-Sharing Single-Carrier Systems With Relay Selection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kyeong Jin Kim ; Mitsubishi Electr. Res. Labs. (MERL), Cambridge, MA, USA ; Duong, T.Q. ; Xuan-Nam Tran

In this paper, we analyze the performance of cooperative spectrum sharing single-carrier (SC) relay systems. Taking into account the peak interference power at the primary user (PU) and the maximum transmit power at the secondary user (SU) network, two separate power allocation constraints are formed. For a two-hop decode-and-forward (DF) relaying protocol and two power allocation constraints, two relay selection schemes, namely, a full-channel state information (CSI)-based best relay selection (BRS) and a partial CSI-based best relay selection (PBRS), are proposed. The distributions of the end-to-end signal-to-noise ratios (e2e-SNRs) for the four cases are derived first, and then their outage probabilities and asymptotic outage probabilities are derived in closed-form. The derived asymptotic outage probabilities are utilized to see different diversity gains. Monte Carlo simulations have verified the derived diversity gains for the four different cases. We also present upper bounds on the ergodic capacities for two particular cases.

Published in:

Signal Processing, IEEE Transactions on  (Volume:60 ,  Issue: 12 )