By Topic

A Nonsymmetric Mixture Model for Unsupervised Image Segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Thanh Minh Nguyen ; Dept. of Electr. & Comput. Eng., Univ. of Windsor, Windsor, ON, Canada ; Wu, Q.M.J.

Finite mixture models with symmetric distribution have been widely used for many computer vision and pattern recognition problems. However, in many applications, the distribution of the data has a non-Gaussian and nonsymmetric form. This paper presents a new nonsymmetric mixture model for image segmentation. The advantage of our method is that it is simple, easy to implement, and intuitively appealing. In this paper, each label is modeled with multiple D-dimensional Student's t-distribution, which is heavily tailed and more robust than Gaussian distribution. Expectation-maximization algorithm is adopted to estimate model parameters and to maximize the lower bound on the data log-likelihood from observations. Numerical experiments on various data types are conducted. The performance of the proposed model is compared with that of other mixture models, demonstrating the robustness, accuracy, and effectiveness of our method.

Published in:

Cybernetics, IEEE Transactions on  (Volume:43 ,  Issue: 2 )