By Topic

Extension of the Blahut–Arimoto Algorithm for Maximizing Directed Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Naiss, I. ; Dept. of Electr. & Comput. Eng., Ben-Gurion Univ. of the Negev, Beer-Sheva, Israel ; Permuter, H.H.

In this paper, we extend the Blahut-Arimoto algorithm for maximizing Massey's directed information. The algorithm can be used for estimating the capacity of channels with delayed feedback, where the feedback is a deterministic function of the output. In order to maximize the directed information, we apply the ideas from the regular Blahut-Arimoto algorithm, i.e., the alternating maximization procedure, to our new problem. We provide both upper and lower bound sequences that converge to the optimum global value. Our main insight in this paper is that in order to find the maximum of the directed information over a causal conditioning probability mass function, one can use a backward index time maximization combined with the alternating maximization procedure. We give a detailed description of the algorithm, showing its complexity and the memory needed, and present several numerical examples.

Published in:

Information Theory, IEEE Transactions on  (Volume:59 ,  Issue: 1 )