By Topic

Oscillation, Orientation, and Locomotion of Underactuated Multilink Mechanical Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lijun Zhu ; Sch. of Electr. Eng. & Comput. Sci., Univ. of Newcastle, Callaghan, NSW, Australia ; Zhiyong Chen ; Iwasaki, T.

We consider a class of multilink mechanical systems arising from undulatory locomotion of multisegmental slender animals. All the body joints are assumed to have actuators, but the system is underactuated because of the lack of direct control over the position and orientation within the inertial frame. Yet, the system is controllable through interactive forces from the environment, just like in animal locomotion. It is systematically revealed that the motion behavior is composed of three fundamental actions: 1) oscillation; 2) orientation; and 3) locomotion. Through rigorous theoretical analyses and numerical simulations, feedback laws are developed to achieve effective control for the aforementioned three actions, exploiting the natural dynamics of body-environment interactions.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:21 ,  Issue: 5 )