Cart (Loading....) | Create Account
Close category search window
 

Max-Min Optimality of Service Rate Control in Closed Queueing Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Li Xia ; Dept. of Autom., Tsinghua Univ., Beijing, China ; Shihada, B.

In this technical note, we discuss the optimality properties of service rate control in closed Jackson networks. We prove that when the cost function is linear to a particular service rate, the system performance is monotonic w.r.t. (with respect to) that service rate and the optimal value of that service rate can be either maximum or minimum (we call it Max-Min optimality); When the second-order derivative of the cost function w.r.t. a particular service rate is always positive (negative), which makes the cost function strictly convex (concave), the optimal value of such service rate for the performance maximization (minimization) problem can be either maximum or minimum. To the best of our knowledge, this is the most general result for the optimality of service rates in closed Jackson networks and all the previous works only involve the first conclusion. Moreover, our result is also valid for both the state-dependent and load-dependent service rates, under both the time-average and customer-average performance criteria.

Published in:

Automatic Control, IEEE Transactions on  (Volume:58 ,  Issue: 4 )

Date of Publication:

April 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.