By Topic

Modular Design of Fully Pipelined Reduction Circuits on FPGAs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Miaoqing Huang ; Dept. of Comput. Sci. & Comput. Eng., Univ. of Arkansas, Fayetteville, AR, USA ; Andrews, D.

Fast and efficient reduction circuits are critical for a broad range of scientific and embedded system applications. High throughput reduction circuits are typically hand designed for specific vector lengths. These circuits need to be modified when the set lengths are changed. In this paper, we present a new design approach that can handle any set length or combination of different consecutive set lengths without stalling and generates in-order results. The flexibility of the design allows it to be used for any reduction operations, such as floating-point addition and multiplication. By providing a simple and efficient interface to the user and a modular architecture for the designer, the proposed technique has a broad impact across a wide range of custom hardware designs.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:24 ,  Issue: 9 )