By Topic

Three-dimensional reconstruction based on multiple virtual planes by using fusion-based camera network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Aliakbarpour, H. ; DEEC, Univ. of Coimbra, Coimbra, Portugal ; Dias, J.

A novel approach for three-dimensional (3D) volumetric reconstruction of an object inside a scene is proposed. A camera network is used to observe the scene. Each camera within the network is rigidly coupled with an Inertial Sensor (IS). A virtual camera is defined for each IS-camera couple using the concept of infinite homography, by fusion of inertial and visual information. Using the inertial data and without planar ground assumption, a set of virtual horizontal planes are defined. The intersections of these inertial-based virtual planes with the object are registered using the concept of planar homography. Moreover a method to estimate the translation vectors among virtual cameras is proposed, which just needs the relative heights of two 3D points in the scene with respect to one of the cameras and their correspondences on the image planes. Different experimental results for the proposed 3D reconstruction method are provided on two different types of scenarios. In the first type, a single IS-camera couple is used and placed in different locations around the object. In the second type, the 3D reconstruction of a walking person (dynamic case) is performed where a set of installed cameras in a smart-room is used for the data acquisition. Moreover, a set of experiments are simulated to analyse the accuracy of the translation estimation method. The experimental results show the feasibility and effectiveness of the proposed framework for the purpose of multi-layer data registration and volumetric reconstruction.

Published in:

Computer Vision, IET  (Volume:6 ,  Issue: 4 )