Cart (Loading....) | Create Account
Close category search window
 

QoS Guarantees and Service Differentiation for Dynamic Cloud Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jia Rao ; Dept. of Comput. Sci., Univ. of Colorado at Colorado Springs, Colorado Springs, CO, USA ; Yudi Wei ; Jiayu Gong ; Cheng-Zhong Xu

Cloud elasticity allows dynamic resource provisioning in concert with actual application demands. Feedback control approaches have been applied with success to resource allocation in physical servers. However, cloud dynamics make the design of an accurate and stable resource controller challenging, especially when application-level performance is considered as the measured output. Application-level performance is highly dependent on the characteristics of workload and sensitive to cloud dynamics. To address these challenges, we extend a self-tuning fuzzy control (STFC) approach, originally developed for response time assurance in web servers to resource allocation in virtualized environments. We introduce mechanisms for adaptive output amplification and flexible rule selection in the STFC approach for better adaptability and stability. Based on the STFC, we further design a two-layer QoS provisioning framework, DynaQoS, that supports adaptive multi-objective resource allocation and service differentiation. We implement a prototype of DynaQoS on a Xen-based cloud testbed. Experimental results on representative server workloads show that STFC outperforms popular controllers such as Kalman filter, ARMA and, Adaptive PI in the control of CPU, memory, and disk bandwidth resources under both static and dynamic workloads. Further results with multiple control objectives and service classes demonstrate the effectiveness of DynaQoS in performance-power control and service differentiation.

Published in:

Network and Service Management, IEEE Transactions on  (Volume:10 ,  Issue: 1 )

Date of Publication:

March 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.