By Topic

3D Head Pose Estimation Based on Scene Flow and Generic Head Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Peng Liu ; Dept. of Comput. Sci., State Univ. of New York at Binghamton, Binghamton, NY, USA ; Reale, M. ; Lijun Yin

Head pose is an important indicator of a person's attention, gestures, and communicative behavior with applications in human computer interaction, multimedia and vision systems. In this paper, we present a novel head pose estimation system by performing head region detection using the Kinect [2], followed by face detection, feature tracking, and finally head pose estimation using an active camera. Ten feature points on the face are defined and tracked by an Active Appearance Model (AAM). We propose to use the scene flow approach to estimate the head pose from 2D video sequences. This estimation is based upon a generic 3D head model through the prior knowledge of the head shape and the geometric relationship between the 2D images and a 3D generic model. We have tested our head pose estimation algorithm with various cameras at various distances in real time. The experiments demonstrate the feasibility and advantages of our system.

Published in:

Multimedia and Expo (ICME), 2012 IEEE International Conference on

Date of Conference:

9-13 July 2012