By Topic

Comparison of Curvelet and Wavelet Texture Features for Content Based Image Retrieval

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ishrat Jahan Sumana ; Gippsland Sch. of Inf. Technol., Monash Univ., Churchill, VIC, Australia ; Guojun Lu ; Dengsheng Zhang

Texture feature plays a vital role in content based Image retrieval (CBIR). Wavelet texture feature modeled by generalized Gaussian density (GGD) [1] performs better than discrete wavelet texture feature. Curve let texture feature was proposed in [2]. In this paper, we compute a new texture feature by applying the generalized Gaussian density to the distribution of curve let coefficients which we call curve let GGD texture feature. The purpose of this paper is to investigate curve let GGD texture feature and compare its retrieval performance with that of curve let, wavelet and wavelet GGD texture features. Experimental results show that both curve let and curve let GGD features perform significantly better than wavelet and wavelet GGD texture features. Among the two types of curve let based features, curve let feature shows better performance in CBIR than curve let GGD texture feature. The findings are discussed in the paper.

Published in:

2012 IEEE International Conference on Multimedia and Expo

Date of Conference:

9-13 July 2012