By Topic

Scene Segmentation and Pedestrian Classification from 3-D Range and Intensity Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xue Wei ; Sch. of Electr., Comput. & Telecommun. Eng., Univ. of Wollongong, Wollongong, NSW, Australia ; Son Lam Phung ; Abdesselam Bouzerdoum

This paper proposes a new approach to classify obstacles using a time-of-flight camera, for applications in assistive navigation of the visually impaired. Combining range and intensity images enables fast and accurate object segmentation, and provides useful navigation cues such as distances to the nearby obstacles and obstacle types. In the proposed approach, a 3-D range image is first segmented using histogram thresholding and mean-shift grouping. Then Fourier and GIST descriptors are applied on each segmented object to extract shape and texture features. Finally, support vector machines are used to recognize the obstacles. This paper focuses on classifying pedestrian and non-pedestrian obstacles. Evaluated on an image data set acquired using a time-of-flight camera, the proposed approach achieves a classification rate of 99.5%.

Published in:

2012 IEEE International Conference on Multimedia and Expo

Date of Conference:

9-13 July 2012