By Topic

Wireless Spectrum Occupancy Prediction Based on Partial Periodic Pattern Mining

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Pei Huang ; Dept. of Comput. Sci. & Eng., Michigan State Univ., East Lansing, MI, USA ; Chin-Jung Liu ; Li Xiao ; Jin Chen

Cognitive radio appears as a promising technology to allocate wireless spectrum between licensed and unlicensed users in an efficient way. The availability of spectrum holes vastly affects the throughput and delay of unlicensed users. Predictive methods for inferring the availability of spectrum holes can help to improve spectrum extraction rate and reduce collision rate. In this paper, a spectrum occupancy prediction model based on Partial Periodic Pattern Mining (PPPM) is introduced. The mining aims to identify frequent spectrum occupancy patterns that are hidden in the spectrum usage of a channel. The mined frequent patterns are then used to predict future channel states (i.e., busy or idle). Based on the prediction, unlicensed users will be able to make use of spectrum holes efficiently without introducing significant interference to licensed users. PPPM outperforms traditional Frequent Pattern Mining (FPM) by considering real patterns that do not repeat perfectly due to noise, sensing errors, and irregular behaviors. Using real life network activities we show a significant reduction on miss rate in channel state prediction. With the proposed prediction mechanism, the performance of Dynamic Spectrum Access (DSA) is substantially improved.

Published in:

Modeling, Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS), 2012 IEEE 20th International Symposium on

Date of Conference:

7-9 Aug. 2012