By Topic

Epitaxial growth and properties of lead-free ferroelectric Na0.5Bi0.5TiO3 thin films grown by pulsed laser deposition on various single crystal substrates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Jean, F. ; Lab. de Sci. des Procedes Ceramiques et de Traitements de Surface, Univ. de Limoges, Limoges, France ; Bousquet, M. ; Duclere, J.-R. ; Boulle, A.
more authors

The epitaxial growth of lead-free ferroelectric Na0.5Bi0.5TiO3 (NBT) thin films on various single crystal substrates was successfully achieved, using the pulsed laser deposition technique (PLD). The present work is divided in two parts, focused on: (i) the growth of NBT layers on c- and r-sapphire (Al2O3) substrates, with and without introducing a CeO2 buffer layer, and (ii) the growth of NBT layers on bare (001)SrTiO3 substrates, with and without introducing a LaNiO3 layer, that could be used as a bottom electrode. In the first part, it was shown that the introduction of a CeO2 buffer layer completely modifies the out-of-plane growth orientation of the NBT films, as well as their microstructure. Indeed, (001)NBT films epitaxially grow only on r-Al2O3 substrates buffered with epitaxial (001)CeO2 layers, while, growing simply NBT on top of bare c or r-Al2O3 substrates, or on top of CeO2/c-Al2O3 heterostructures leads to polycrystalline or textured films. In the second part, we demonstrate that (001)-oriented NBT layers deposited on either bare (001)SrTiO3 or (001)SrTiO3 substrates (STO) covered with (001)LaNiO3 (LNO) are systematically epitaxially grown. Furthermore, the microstructure of the samples is strongly affected by the introduction of the LaNiO3 layer.

Published in:

Applications of Ferroelectrics held jointly with 2012 European Conference on the Applications of Polar Dielectrics and 2012 International Symp Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials (ISAF/ECAPD/PFM), 2012 Intl Symp

Date of Conference:

9-13 July 2012