Cart (Loading....) | Create Account
Close category search window
 

Ferroelectric and dielectric properties of bismuth ferrite based thin films by Pulsed Laser Deposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rivera, R. ; Dept. of Mater. Sci. & Eng., State Univ. of New Jersey, Piscataway, NJ, USA ; Hejazi, M. ; Safari, A.

BiFeO3 (BFO) has stimulated a great interest in recent years for its room temperature multiferroic behavior with very high remnant polarization. However, the leakage current of BFO films is very high. To lower the leakage current, we have developed thin films with following target compositions on SrRuO3 buffered on SrTiO3 substrate by Pulsed Laser Deposition (PLD): (A) BiFeO3, (B) 0.88Bi0.5Na0.5TiO3-0.08Bi0.5K0.5TiO3-0.04BaTiO3, (C) 0.6BiFeO3-0.4(Bi0.5K0.5TiO3) The phase, growth orientation, microstructural characterization and electrical properties were investigated as a function of deposition parameters. The epitaxial bi-layered 300nm BNT-BKT-BT/BFO thin films (150nm each) exhibited ferroelectric behavior as: 2Pr = 44.0 μC.cm-2, 2Ec = 200 kV.cm-1 and K = 140. Thin films with a composition of 0.6BFO-0.4BKT have also been deposited with different oxygen pressures of 300-500 mTorr. Preliminary results of 0.6BFO-0.4BKT films show that the leakage current can be suppressed by about 4 orders of magnitude which in turn improves the ferroelectric and dielectric properties of the films. It is observed that the remnant polarization increases from 8 to 19 μC.cm-2 as the oxygen pressure is changed from 500 to 300mtorr.

Published in:

Applications of Ferroelectrics held jointly with 2012 European Conference on the Applications of Polar Dielectrics and 2012 International Symp Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials (ISAF/ECAPD/PFM), 2012 Intl Symp

Date of Conference:

9-13 July 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.