By Topic

Mean shift tracking through scale and occlusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Dulai ; Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK ; T. Stathaki

This study describes a method for tracking objects through scale and occlusion. The technique presented is based on the mean shift algorithm, which provides an efficient way to track objects based on their colour characteristics. A novel and efficient method is derived for tracking through changes in the target scale, where an object of interest moves away or towards the camera and therefore appears to change size in the image plane. The method works by interleaving spatial mean shift iterations with scale iterations. It is shown that this method is considerably more efficient than other methods and possesses other advantages too. It is also demonstrated that the Bhattacharyya coefficient, a histogram similarity metric that is used in the mean shift framework, can be used to reliably detect when target occlusion occurs. In such situations, the motion of an object can be extrapolated to give an accurate estimate of its position. This is used as the basis of a technique for tracking through occlusion. Experimental results are presented on data from various scenarios.

Published in:

IET Signal Processing  (Volume:6 ,  Issue: 5 )