By Topic

Range Doppler and chirp scaling processing of synthetic aperture radar data using the fractional Fourier transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Clemente, C. ; Dept. of Electron. & Electr. Eng., Univ. of Strathclyde, Glasgow, UK ; Soraghan, J.J.

Synthetic aperture radar (SAR) systems are used to form high-resolution images from radar backscatter signals. The fractional Fourier transform (FrFT), which is a generalised form of the well-known Fourier transform, has opened up the possibility of a new range of potentially promising and useful applications that involve the use and detection of chirp signals that include pattern recognition and SAR imaging. In this study a time variant problem associated with the use of the FrFT for SAR processing is addressed and a new algorithm is presented that resolves this problem. Two new FrFT-based SAR processing algorithms are presented namely the FrRDA and the eFrCSA that are shown to improve the well-established range-Doppler and chirp-scaling algorithms for SAR processing. The performance of the algorithms are assessed using simulated and real Radarsat-1 data sets. The results confirm that the FrFT-based SAR processing methods provide enhanced resolution yielding both lower side lobes effects and improved target detection.

Published in:

Signal Processing, IET  (Volume:6 ,  Issue: 5 )