By Topic

Efficient multisensor fusion with sliding window Kalman filtering for discrete-time uncertain systems with delays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
I. Y. Song ; School of Information and Mechatronics, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju 500-712, South Korea ; M. Jeon ; V. Shin

In this study, we provide two computationally effective multisensory fusion filtering algorithms for discrete-time linear uncertain systems with state and observation time-delays. The first algorithm is shaped by algebraic forms for multirate sensor systems, and then we propose a matrix form of filtering equations using block matrices. The second algorithm is based on exact cross-covariance matrix equations. These equations are useful to compute matrix weights for fusion estimation in a multidimensional-multisensor environment. Furthermore, our proposed filtering algorithms are based on the sliding window strategy in order to achieve high estimation accuracy and stability under parametric uncertainties. The authors demonstrate the low computational complexities of the proposed fusion filtering algorithms and how the proposed algorithms robust against dynamic model uncertainties comparing with Kalman filtering with time delays.

Published in:

IET Signal Processing  (Volume:6 ,  Issue: 5 )