By Topic

EM-Based Maximum-Likelihood Channel Estimation in Multicarrier Systems With Phase Distortion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rodrigo Carvajal ; Sch. of Electr. Eng. & Comput. Sci., Univ. of Newcastle, Newcastle, NSW, Australia ; Juan C. Aguero ; Boris I. Godoy ; Graham C. Goodwin

In this paper, we address channel-impulse response (CIR) estimation in multicarrier systems with phase distortion, namely, phase noise (PHN) and carrier frequency offset (CFO). The estimation problem also considers the joint estimation of the channel noise variance, CFO, and PHN bandwidth. We develop a general state-space model for multicarrier systems, separating the complex signals into their real and imaginary parts. This provides a valid framework for any modulation scheme (proper or improper). We use the expectation-maximization (EM) algorithm to solve the maximum-likelihood (ML) estimation problem. Our approach exploits the linear and Gaussian structure associated with the transmitted signal. Due to the nonlinear nature of the PHN, sequential Monte Carlo (MC) techniques are considered. Our analysis includes general expressions under different training scenarios. We show, via simulation, the impact of PHN bandwidth estimation on overall parameter estimation, and we study the impact of different training levels. In addition, we consider the accuracy of the parameter estimates, providing expressions for the Fisher information matrix (FIM) and focusing on the estimation accuracy of the PHN bandwidth.

Published in:

IEEE Transactions on Vehicular Technology  (Volume:62 ,  Issue: 1 )