By Topic

HBM ESD Robustness of GaN-on-Si Schottky Diodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

17 Author(s)

The ESD robustness of GaN-on-Si Schottky diodes is investigated using on-wafer HBM and TLP. Both forward and reverse diode operation modes are analyzed as a function of device geometry, which strongly impact the corresponding failure mechanism. In forward mode, the anode-to-cathode length reduction and the total device width increase are beneficial for ESD robustness; however, in reverse mode, the ESD robustness does not depend on the total device width and saturates at around 400 V for medium and long anode-to-cathode lengths. The corresponding failure mechanisms are respectively attributed to the current distribution and Si substrate breakdown under forward and reverse mode ESD stresses.

Published in:

Device and Materials Reliability, IEEE Transactions on  (Volume:12 ,  Issue: 4 )