By Topic

Robust Adaptive Dynamic Programming for Large-Scale Systems With an Application to Multimachine Power Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yu Jiang ; Department of Electrical and Computer Engineering, Polytechnic Institute of New York University, Brooklyn, NY, USA ; Zhong-Ping Jiang

This brief presents a new approach to decentralized control design of complex systems with unknown parameters and dynamic uncertainties. A key strategy is to use the theory of robust adaptive dynamic programming and the policy iteration technique. An iterative control algorithm is given to devise a decentralized optimal controller that globally asymptotically stabilizes the system in question. Stability analysis is accomplished by means of the small-gain theorem. The effectiveness of the proposed computational control algorithm is demonstrated via the online learning control of multimachine power systems with governor controllers.

Published in:

IEEE Transactions on Circuits and Systems II: Express Briefs  (Volume:59 ,  Issue: 10 )