By Topic

Sampled data automatic generation control with superconducting magnetic energy storage in power systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tripathy, S.C. ; Centre for Energy Studies, Indian Inst. of Technol., New Delhi, India ; Juengst, K.-P.

A discrete state-space model of a two-area interconnected power system with reheat steam turbine, governor deadband nonlinearity and superconducting magnetic energy storage is developed in this paper. The effect of a small-capacity superconducting magnetic energy storage (SMES) system is studied in relation to supplying sudden power requirements of real power load. The feasibility of using an IGBT power converter instead of a thyristor converter as a power conditioning system with the SMES is studied. Time domain simulation results are also presented which show the improvement of transient response with SMES

Published in:

Energy Conversion, IEEE Transactions on  (Volume:12 ,  Issue: 2 )