By Topic

Modelling of magnetic saturation in smooth air-gap synchronous machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
E. Levi ; Sch. of Electr. Eng., Electron. & Phys., Liverpool John Moores Univ., UK

Main flux saturation in d-q axis representation of synchronous machines is at present modelled by selecting either all the winding currents or all the winding flux linkages as state-space variables. However, these two available models are just a tiny portion of the complete set of models that can be obtained by selecting other combinations of state-space variables. This paper presents a general procedure for main flux saturation modelling in smooth air-gap synchronous machines, that is applicable for most selections of state-space variables. The method relies on the concept of `generalised flux' and `generalised inductance', that has been successfully applied in modelling of saturated single-cage and double-cage induction machines. The concept is extended to saturation modelling in smooth air-gap synchronous machines. A number of models, that result from the application of the method for different selections of state-space variables, are presented in detail

Published in:

IEEE Transactions on Energy Conversion  (Volume:12 ,  Issue: 2 )