By Topic

Variability Mitigation Mechanisms in Scaled 3T1D-DRAM Memories to 22 nm and Beyond

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Amat, E. ; Univ. Politec. de Catalunya, Barcelona, Spain ; Almudever, C.G. ; Aymerich, N. ; Canal, R.
more authors

It has been stated that 3T1D-DRAM cell is a valid alternative to be implemented on L1 memory cache to substitute 6T, highly affected by variability. In this paper, it is shown that the 3T1D memory cells present significant tolerance to high levels of device parameter fluctuation when they are scaled to nodes smaller than 22 nm. Furthermore, we present some strategies to mitigate the cell variability. Moreover, while scaling down capacitorless DRAM cells is a challenging trend, we also show how the scaling drawbacks can be compensated through the following: 1) the channel strain of the cell devices and 2) the proposal of new strategies to further enhance the memory cell behavior.

Published in:

Device and Materials Reliability, IEEE Transactions on  (Volume:13 ,  Issue: 1 )