Cart (Loading....) | Create Account
Close category search window

305 Tb/s Space Division Multiplexed Transmission Using Homogeneous 19-Core Fiber

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

13 Author(s)
Sakaguchi, J. ; Photonic Network Res. Inst., Nat. Inst. of Inf. & Commun. Technol., Tokyo, Japan ; Puttnam, B.J. ; Klaus, W. ; Awaji, Y.
more authors

We report record capacity data transmission at 305 Tb/s over 10.1 km, using space division multiplexing (SDM) with 19 channels. To realize such a large SDM channel number, we fabricated a trench-assisted homogeneous 19-core fiber with average intercore crosstalk of about -32 dB at 1550 nm. We also fabricated a 19-channel SDM multiplexer/demultiplexer using free-space optics with low insertion losses and low additional crosstalk. The data signal transmitted through each SDM channel was 100 wavelength division multiplexing (100 GHz spacing) 2 × 86 Gb/s polarization-division-multiplexed quadrature phase shift keying signals and the spectral efficiency was 30.5 b/s/Hz.

Published in:

Lightwave Technology, Journal of  (Volume:31 ,  Issue: 4 )

Date of Publication:

Feb.15, 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.