Cart (Loading....) | Create Account
Close category search window
 

Stochastic Gradient Descent Optimization for Low Power Nano-CMOS Thermal Sensor Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Okobiah, O. ; NanoSystem Design Lab. (NSDL), Univ. of North Texas, Denton, TX, USA ; Mohanty, S.P. ; Kougianos, E. ; Garitselov, O.
more authors

The drive for ultra efficient and low-cost portable devices continues to push the need for low power circuit designs. The increasing transistor density and complexity of IC designs aggravates the task of producing efficient low power and low cost design. The short time to market (TTM) also increases this burden on designers, as optimal designs have to be produced in an ever decreasing amount of time. This paper presents an optimization design flow methodology that optimizes the power (accounting leakage) consumption of integrated circuits (ICs). The design flow incorporates a stochastic gradient descent (SGD) based algorithm and is implemented using a 45 nm thermal sensor circuit as case study. Power-efficient high-sensitive thermal sensors are important to reduce the burden on the systems or circuits that they are implanted to sense. Experiments are performed to apply the proposed design flow methodology on the thermal sensor with the power consumption as the design objective while keeping the temperature resolution as a constraint. Experiments on full-blown (RCLK) netlist of sense amplifier show a reduction in power consumption by 38%.

Published in:

VLSI (ISVLSI), 2012 IEEE Computer Society Annual Symposium on

Date of Conference:

19-21 Aug. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.