By Topic

Economics of Electric Vehicle Charging: A Game Theoretic Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

In this paper, the problem of grid-to-vehicle energy exchange between a smart grid and plug-in electric vehicle groups (PEVGs) is studied using a noncooperative Stackelberg game. In this game, on the one hand, the smart grid, which acts as a leader, needs to decide on its price so as to optimize its revenue while ensuring the PEVGs' participation. On the other hand, the PEVGs, which act as followers, need to decide on their charging strategies so as to optimize a tradeoff between the benefit from battery charging and the associated cost. Using variational inequalities, it is shown that the proposed game possesses a socially optimal Stackelberg equilibrium in which the grid optimizes its price while the PEVGs choose their equilibrium strategies. A distributed algorithm that enables the PEVGs and the smart grid to reach this equilibrium is proposed and assessed by extensive simulations. Further, the model is extended to a time-varying case that can incorporate and handle slowly varying environments.

Published in:

Smart Grid, IEEE Transactions on  (Volume:3 ,  Issue: 4 )