By Topic

Voltage Driving Scheme Using Three TFTs and One Capacitor for Active-Matrix Organic Light-Emitting Diode Pixel Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Chih-Lung Lin ; Department of Electrical Engineering and the Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan, Taiwan, R.O.C. ; Chia-Che Hung ; Wen-Yen Chang ; Mao-Hsun Cheng
more authors

This work presents a new active-matrix organic light-emitting diode (AMOLED) pixel circuit with a novel driving scheme that is based on low-temperature polycrystalline-silicon thin film transistors (LTPS TFTs). The proposed circuit that consists of one driving TFT and two switching TFTs, which are all p-type, can successfully compensate for not only variations in the TFT threshold voltage but also the current-resistance (IR) voltage drop in the power line. The functionality of the pixel circuit for the array structure and the uniformity of organic light-emitting diode (OLED) current are verified using H-Simulation Program with Integrated Circuit Emphasis (HSPICE). According to the results of a simulation, over the entire range of tested data voltages (-4.5 to -2.5 V), the relative errors of the OLED current of the proposed circuit are below 1.2% when the driving TFT threshold voltage varies from -0.5 to +0.5 V.

Published in:

Journal of Display Technology  (Volume:8 ,  Issue: 10 )