Cart (Loading....) | Create Account
Close category search window
 

Message-Passing De-Quantization With Applications to Compressed Sensing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kamilov, U.S. ; Res. Lab. of Electron., Massachusetts Inst. of Technol., Cambridge, MA, USA ; Goyal, V.K. ; Rangan, S.

Estimation of a vector from quantized linear measurements is a common problem for which simple linear techniques are suboptimal-sometimes greatly so. This paper develops message-passing de-quantization (MPDQ) algorithms for minimum mean-squared error estimation of a random vector from quantized linear measurements, notably allowing the linear expansion to be overcomplete or undercomplete and the scalar quantization to be regular or non-regular. The algorithm is based on generalized approximate message passing (GAMP), a recently-developed Gaussian approximation of loopy belief propagation for estimation with linear transforms and nonlinear componentwise-separable output channels. For MPDQ, scalar quantization of measurements is incorporated into the output channel formalism, leading to the first tractable and effective method for high-dimensional estimation problems involving non-regular scalar quantization. The algorithm is computationally simple and can incorporate arbitrary separable priors on the input vector including sparsity-inducing priors that arise in the context of compressed sensing. Moreover, under the assumption of a Gaussian measurement matrix with i.i.d. entries, the asymptotic error performance of MPDQ can be accurately predicted and tracked through a simple set of scalar state evolution equations. We additionally use state evolution to design MSE-optimal scalar quantizers for MPDQ signal reconstruction and empirically demonstrate the superior error performance of the resulting quantizers. In particular, our results show that non-regular quantization can greatly improve rate-distortion performance in some problems with oversampling or with undersampling combined with a sparsity-inducing prior.

Published in:

Signal Processing, IEEE Transactions on  (Volume:60 ,  Issue: 12 )

Date of Publication:

Dec. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.