By Topic

Reliable Classification of Vehicle Types Based on Cascade Classifier Ensembles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Bailing Zhang ; Dept. of Comput. Sci. & Software Eng., Xi'an Jiaotong-Liverpool Univ., Suzhou, China

Vehicle-type recognition based on images is a challenging task. This paper comparatively studied two feature extraction methods for image description, i.e., the Gabor wavelet transform and the Pyramid Histogram of Oriented Gradients (PHOG). The Gabor transform has been widely adopted to extract image features for various vision tasks. PHOG has the superiority in its description of more discriminating information. A highly reliable classification scheme was proposed by cascade classifier ensembles with reject option to accommodate the situations where no decision should be made if there exists adequate ambiguity. The first ensemble is heterogeneous, consisting of several classifiers, including k-nearest neighbors (kNNs), multiple-layer perceptrons (MLPs), support vector machines (SVMs), and random forest. The classification reliability is further enhanced by a second classifier ensemble, which is composed of a set of base MLPs coordinated by an ensemble metalearning method called rotation forest (RF). For both of the ensembles, rejection option is accomplished by relating the consensus degree from majority voting to a confidence measure and by abstaining to classify ambiguous samples if the consensus degree is lower than a threshold. The final class label is assigned by dual majority voting from the two ensembles. Experimental results using more than 600 images from a variety of 21 makes of cars and vans demonstrated the effectiveness of the proposed approach. The cascade ensembles produce consistently reliable results. With a moderate ensemble size of 25 in the second ensemble, the two-stage classification scheme offers 98.65% accuracy with a rejection rate of 2.5%, exhibiting promising potential for real-world applications.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:14 ,  Issue: 1 )