By Topic

Codes on Graphs: Observability, Controllability, and Local Reducibility

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
G. David Forney Jr. ; Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA, USA ; Heide Gluesing-Luerssen

This paper investigates properties of realizations of linear or group codes on general graphs that lead to local reducibility. Trimness and properness are dual properties of constraint codes. A linear or group realization with a constraint code that is not both trim and proper is locally reducible. A linear or group realization on a finite cycle-free graph is minimal if and only if every local constraint code is trim and proper. A realization is called observable if there is a one-to-one correspondence between codewords and configurations, and controllable if it has independent constraints. A linear or group realization is observable if and only if its dual is controllable. A simple counting test for controllability is given. An unobservable or uncontrollable realization is locally reducible. Parity-check realizations are controllable if and only if they have independent parity checks. In an uncontrollable tail-biting trellis realization, the behavior partitions into disconnected sub-behaviors, but this property does not hold for nontrellis realizations. On a general graph, the support of an unobservable configuration is a generalized cycle.

Published in:

IEEE Transactions on Information Theory  (Volume:59 ,  Issue: 1 )