By Topic

Design of Multicavities on Left-Handed Photonic-Crystal-Based Chemical Sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
F. Ouerghi ; Department of Physics, Faculty of Science University of ElManar, Quantum Physics and Photonics group, Tunis, Tunisia ; F. AbdelMalek ; Shyqyri Haxha ; E. K. Akowuah
more authors

This paper presents a theoretical study on a novel chemical sensor platform based on a 2-D photonic crystal with negative refraction (PCNR). The proposed device consists of distributed multinanocavities embedded within the PCNR. A 2-D finite-difference time-domain method with perfectly matched layers has been employed to investigate the performance of the sensor for different analytes and structural parameters. The calculations show that it is possible to detect simultaneously two analytes when the refractive index is larger than that of water. The quality factor was determined to be around 105 when the radii of the central nanocavity is and that of the external is .

Published in:

Journal of Lightwave Technology  (Volume:30 ,  Issue: 20 )