By Topic

Scalable Hypergrid k-NN-Based Online Anomaly Detection in Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Miao Xie ; Sch. of Eng. & Inf. Technol., Univ. of New South Wales (UNSW), Canberra, ACT, Australia ; Jiankun Hu ; Song Han ; Hsiao-Hwa Chen

Online anomaly detection (AD) is an important technique for monitoring wireless sensor networks (WSNs), which protects WSNs from cyberattacks and random faults. As a scalable and parameter-free unsupervised AD technique, k-nearest neighbor (kNN) algorithm has attracted a lot of attention for its applications in computer networks and WSNs. However, the nature of lazy-learning makes the kNN-based AD schemes difficult to be used in an online manner, especially when communication cost is constrained. In this paper, a new kNN-based AD scheme based on hypergrid intuition is proposed for WSN applications to overcome the lazy-learning problem. Through redefining anomaly from a hypersphere detection region (DR) to a hypercube DR, the computational complexity is reduced significantly. At the same time, an attached coefficient is used to convert a hypergrid structure into a positive coordinate space in order to retain the redundancy for online update and tailor for bit operation. In addition, distributed computing is taken into account, and position of the hypercube is encoded by a few bits only using the bit operation. As a result, the new scheme is able to work successfully in any environment without human interventions. Finally, the experiments with a real WSN data set demonstrate that the proposed scheme is effective and robust.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:24 ,  Issue: 8 )