By Topic

Efficient Computation of Robust Average of Compressive Sensing Data in Wireless Sensor Networks in the Presence of Sensor Faults

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chun Tung Chou ; Sch. of Comput. Sci. & Eng., Univ. of New South Wales, Sydney, NSW, Australia ; Ignjatovic, A. ; Wen Hu

Wireless sensor networks (WSNs) enable the collection of physical measurements over a large geographic area. It is often the case that we are interested in computing and tracking the spatial-average of the sensor measurements over a region of the WSN. Unfortunately, the standard average operation is not robust because it is highly susceptible to sensor faults and heterogeneous measurement noise. In this paper, we propose a computational efficient method to compute a weighted average (which we will call robust average) of sensor measurements, which appropriately takes sensor faults and sensor noise into consideration. We assume that the sensors in the WSN use random projections to compress the data and send the compressed data to the data fusion centre. Computational efficiency of our method is achieved by having the data fusion centre work directly with the compressed data streams. The key advantage of our proposed method is that the data fusion centre only needs to perform decompression once to compute the robust average, thus greatly reducing the computational requirements. We apply our proposed method to the data collected from two WSN deployments to demonstrate its efficiency and accuracy.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:24 ,  Issue: 8 )