By Topic

A 3.42-Approximation Algorithm for Scheduling Malleable Tasks under Precedence Constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chi-Yeh Chen ; Dept. of Comput. Sci. & Inf. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Chih-Ping Chu

Scheduling malleable tasks under general precedence constraints involves finding a minimum makespan (maximum completion time) by a feasible allotment. Based on the monotonous penalty assumptions of Blayo et al. [2], this work defines two assumptions concerning malleable tasks: the processing time of a malleable task is nonincreasing in the number of processors, while the work of a malleable task is nondecreasing in the number of processors. Additionally, the work function is assumed herein to be convex in the processing time. The proposed algorithm reformulates the linear program of [11], and this algorithm and associated proofs are inspired by the ones of [11]. This work describes a novel polynomial-time approximation algorithm that is capable of achieving an approximation ratio of 2+√2≈3.4142. This work further demonstrates that the proposed algorithm can yield an approximation ratio of 2.9549 when the processing time is strictly decreasing in the number of the processors allocated to the task. This finding represents an improvement upon the previous best approximation ratio of 100/63+100(√6469+137)/5481≈3.2920 [12] achieved under the same assumptions.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:24 ,  Issue: 8 )