Cart (Loading....) | Create Account
Close category search window
 

A graph-based clustering algorithm for anomaly intrusion detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhou Mingqiang ; Coll. of Comput. Sci., Chongqing Univ., Chongqing, China ; Huang Hui ; Wang Qian

Many researchers have argued that data mining can improve the performance of intrusion detection system. So as one of important techniques of data mining, clustering is an important means for intrusion detection. Due to the disadvantages of traditional clustering methods for intrusion detection, this paper presents a graph-based intrusion detection algorithm by using outlier detection method that based on local deviation coefficient (LDCGB). Compared to other intrusion detection algorithm of clustering, this algorithm is unnecessary to initial cluster number. Meanwhile, it is robust in the outlier's affection and able to detect any shape of cluster rather that the circle one only. Moreover, it still has stable rate of detection on unknown or muted attacks. LDCGB uses graph-based cluster algorithm (GB) to get an initial partition of data set which is depended on parameter of cluster precision rather than initial cluster number. On the other hand, because of this intrusion detection model is based on mixed training dataset, so it must have high label accuracy to guarantee its performance. Therefore, in labeling phrase, the algorithm imposes outlier detection algorithm of local deviation coefficient to label the result of GB algorithm again. This measure is able to improve the labeling accuracy. The detection rate and false positive rate are obtained after the algorithm is tested by the KDDCup99 data set. The experimental result shows that the proposed algorithm could get a satisfactory performance.

Published in:

Computer Science & Education (ICCSE), 2012 7th International Conference on

Date of Conference:

14-17 July 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.