By Topic

Vienna-Fortran/HPF extensions for sparse and irregular problems and their compilation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
M. Ujaldon ; Dept. of Comput. Archit., Malaga Univ., Spain ; E. L. Zapata ; B. M. Chapman ; H. P. Zima

Vienna Fortran, High Performance Fortran (HPF), and other data parallel languages have been introduced to allow the programming of massively parallel distributed-memory machines (DMMP) at a relatively high level of abstraction, based on the SPMD paradigm. Their main features include directives to express the distribution of data and computations across the processors of a machine. In this paper, we use Vienna-Fortran as a general framework for dealing with sparse data structures. We describe new methods for the representation and distribution of such data on DMMPs, and propose simple language features that permit the user to characterize a matrix as “sparse” and specify the associated representation. Together with the data distribution for the matrix, this enables the complier and runtime system to translate sequential sparse code into explicitly parallel message-passing code. We develop new compilation and runtime techniques, which focus on achieving storage economy and reducing communication overhead in the target program. The overall result is a powerful mechanism for dealing efficiently with sparse matrices in data parallel languages and their compilers for DMMPs

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:8 ,  Issue: 10 )