System Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Robust 1-bit Compressed Sensing and Sparse Logistic Regression: A Convex Programming Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Plan, Y. ; Dept. of Math., Univ. of Michigan, Ann Arbor, MI, USA ; Vershynin, R.

This paper develops theoretical results regarding noisy 1-bit compressed sensing and sparse binomial regression. We demonstrate that a single convex program gives an accurate estimate of the signal, or coefficient vector, for both of these models. We show that an -sparse signal in can be accurately estimated from m = O(s log(n/s)) single-bit measurements using a simple convex program. This remains true even if each measurement bit is flipped with probability nearly 1/2. Worst-case (adversarial) noise can also be accounted for, and uniform results that hold for all sparse inputs are derived as well. In the terminology of sparse logistic regression, we show that O (s log (2n/s)) Bernoulli trials are sufficient to estimate a coefficient vector in which is approximately -sparse. Moreover, the same convex program works for virtually all generalized linear models, in which the link function may be unknown. To our knowledge, these are the first results that tie together the theory of sparse logistic regression to 1-bit compressed sensing. Our results apply to general signal structures aside from sparsity; one only needs to know the size of the set where signals reside. The size is given by the mean width of K, a computable quantity whose square serves as a robust extension of the dimension.

Published in:

Information Theory, IEEE Transactions on  (Volume:59 ,  Issue: 1 )