By Topic

Radar Maneuvering Target Motion Estimation Based on Generalized Radon-Fourier Transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jia Xu ; Sch. of Inf. & Electron., Beijing Inst. of Technol., Beijing, China ; Xiang-Gen Xia ; Shi-Bao Peng ; Ji Yu
more authors

The slant range of a radar maneuvering target is usually modeled as a multivariate function in terms of its illumination time and multiple motion parameters. This multivariate range function includes the modulations on both the envelope and the phase of an echo of the coherent radar target and provides the foundation for radar target motion estimation. In this paper, the maximum likelihood estimators (MLE) are derived for motion estimation of a maneuvering target based on joint envelope and phase measurement, phase-only measurement and envelope-only measurement in case of high signal-to-noise ratio (SNR), respectively. It is shown that the proposed MLEs are to search the maximums of the outputs of the proposed generalized Radon-Fourier transform (GRFT), generalized Radon transform (GRT) and generalized Fourier transform (GFT), respectively. Furthermore, by approximating the slant range function by a high-order polynomial, the inherent accuracy limitations, i.e., the Cramer-Rao low bounds (CRLB), and some analysis are given for high order motion parameter estimations in different scenarios. Finally, some numerical experimental results are provided to demonstrate the effectiveness of the proposed methods.

Published in:

Signal Processing, IEEE Transactions on  (Volume:60 ,  Issue: 12 )