By Topic

Energy-Efficient Resource Allocation in OFDMA Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Cong Xiong ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Li, G.Y. ; Shunqing Zhang ; Yan Chen
more authors

The widespread application of multimedia wireless services and requirements of ubiquitous access have triggered rapidly booming energy consumption at both the base station side and the user equipment (UE) side. Hence, energy-efficient design in wireless networks is very important and is becoming an inevitable trend. In this paper, we study the energy-efficient resource allocation in both downlink and uplink cellular networks with orthogonal frequency division multiple access (OFDMA). For the downlink transmission, the generalized energy efficiency (EE) is maximized while for the uplink case the minimum individual EE is maximized, both under certain prescribed per-UE quality-of-service (QoS) requirements. For both transmission scenarios, we first provide the optimal solution and then develop a suboptimal but low-complexity approach by exploring the inherent structure and property of the energy-efficient design. For the downlink case, by modifying the original problem, we also find a computationally efficient and numerically tractable upper bound on the EE, which indicates the performance limit and is demonstrated to be quite tight if the number of subcarriers is larger than that of UEs and motivates us to find a near-optimal approach relying on the quasiconcave relation between the modified EE and transmit power. Simulation results show that the energy-efficient design greatly improves EE compared with the conventional spectral-efficient design and the low-complexity suboptimal approaches can achieve a promising tradeoff between performance and complexity.

Published in:

Communications, IEEE Transactions on  (Volume:60 ,  Issue: 12 )