By Topic

Predictive Handling of Asynchronous Concept Drifts in Distributed Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

In a distributed computing environment, peers collaboratively learn to classify concepts of interest from each other. When external changes happen and their concepts drift, the peers should adapt to avoid increase in misclassification errors. The problem of adaptation becomes more difficult when the changes are asynchronous, i.e., when peers experience drifts at different times. We address this problem by developing an ensemble approach, PINE, that combines reactive adaptation via drift detection, and proactive handling of upcoming changes via early warning and adaptation across the peers. With empirical study on simulated and real-world data sets, we show that PINE handles asynchronous concept drifts better and faster than current state-of-the-art approaches, which have been designed to work in less challenging environments. In addition, PINE is parameter insensitive and incurs less communication cost while achieving better accuracy.

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:25 ,  Issue: 10 )