By Topic

Compact Relativistic Magnetron With Gaussian Radiation Pattern

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Leach, C. ; Dept. of Electr. & Comput. Eng., Univ. of New Mexico, Albuquerque, NM, USA ; Prasad, S. ; Fuks, M.I. ; Schamiloglu, E.

A compact A6 relativistic magnetron is proposed which operates in the π-mode and whose radiation is extracted axially as a TE11 mode through a cylindrical waveguide with the same cross section as that of the anode block. This radiated mode is similar to a Gaussian microwave beam. The advantages of this magnetron include the minimal volume of the applied magnetic field and, as a consequence, the proximity of the electron dump to the anode block for the electrons leaking from the interaction space that minimizes both the diameter and the axial length of the magnetron. By using MAGIC particle-in-cell (PIC) simulations, we demonstrate the possibility of generating a Gaussian radiation pattern with power of about 0.5 GW when the applied voltage is 350 kV. This compact magnetron is easier to implement than the magnetron with diffraction output (MDO), although with reduced efficiency.

Published in:

Plasma Science, IEEE Transactions on  (Volume:40 ,  Issue: 11 )