Cart (Loading....) | Create Account
Close category search window
 

Structural Identifiability and Practical Applicability of an Alveolar Recruitment Model for ARDS Patients

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Schranz, C. ; Inst. of Tech. Med., Furtwangen Univ., Villingen-Schwenningen, Germany ; Docherty, P.D. ; Yeong Shiong Chiew ; Chase, J.G.
more authors

Patient-specific mathematical models of respiratory mechanics can offer substantial insight into patient state and pulmonary dynamics that are not directly measurable. Thus, they offer significant potential to evaluate and guide patient-specific lung protective ventilator strategies for acute respiratory distress syndrome (ARDS) patients. To assure bedside applicability, the model must be computationally efficient and identifiable from the limited available data, while also capturing dominant dynamics and trends observed in ARDS patients. In this study, an existing static recruitment model is enhanced by considering alveolar distension and implemented in a novel time-continuous dynamic respiratory mechanics model. The model was tested for structural identifiability and a hierarchical gradient descent approach was used to fit the model to low-flow test responses of 12 ARDS patients. Finally, a comprehensive practical identifiability analysis was performed to evaluate the impact of data quality on the model parameters. Identified parameter values were physiologically plausible and very accurately reproduced the measured pressure responses. Structural identifiability of the model was proven, but practical identifiability analysis of the results showed a lack of convexity on the error surface indicating that successful parameter identification is currently not assured in all test sets. Overall, the model presented is physiologically and clinically relevant, captures ARDS dynamics, and uses clinically descriptive parameters. The patient-specific models show the ability to capture pulmonary dynamics directly relevant to patient condition and clinical guidance. These characteristics currently cannot be directly measured or established without such a validated model.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:59 ,  Issue: 12 )

Date of Publication:

Dec. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.