By Topic

Wave patterns formation in one-dimensional networks of coupled neuron-like oscillators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Dynamics of two types of one-dimensional networks of electrically coupled neuron-like oscillators implemented using analog electronic circuits are investigated. The networks mimic interacting excitable or bistable neurons which are coupled via gap junctions. The first network is composed of FitzHugh-Nagumo oscillators and the second one is composed of modified FitzHugh-Nagumo oscillators with additional conductance. It is forecasted theoretically and shown experimentally that in both types of networks there exist a variety of different propagating waves: fonts (kink and antikink), excitation pulses, periodic waves and solitary bound states. The fronts and pulses can annihilate or demonstrate particles-like behavior during the interaction with each other and borders of networks. It is shown that particle-like behavior can lead to formation of complex periodic spatiotemporal wave patterns. Besides the periodic patterns in modified FitzHugh-Nagumo network there exist chaotic fractal-like spatiotemporal patterns. It is demonstrated theoretically that emergence of complex patterns can be associated with the existence of a heteroclinic and/or gomoclinic contours in the phase space of corresponding traveling wave systems.

Published in:

Nonlinear Dynamics of Electronic Systems, Proceedings of NDES 2012

Date of Conference:

11-13 July 2012